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Self-collimation in photonic crystals with
anisotropic constituents
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In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and
the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-
dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate
the efficacy of the self-collimation features.
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Photonic crystals (PhCs) possess unique dispersion prop-
erties that can be exploited to enable novel photonic
applications. These properties can also be used to sig-
nificantly improve the performance of existing photonic
devices. Many applications of PhCs such as waveguides,
PC fibers and photonic cavities have been explored by
using the presence of a photonic bandgap over a desired
frequency range with a defect incorporated in the struc-
ture to allow only a desired mode with its symmetry to
propagate. This strategy often requires a large index
contrast between materials to create the band gap in the
first place and limit the materials that can be used for
the devices. On the other hand, many phenomena such
as negative refraction, superprism, super-resolution, and
slow light have been demonstrated based on unique spa-
tial and temporal dispersion properties of a PhC[1] and
they are often observable with materials having a low in-
dex contrast.

In this paper we investigate self-collimation, another
dispersion-related phenomenon of PhCs, that is mani-
fested to some degree in all PhCs. In free space or ho-
mogeneous materials propagating electromagnetic waves
spread due to diffraction effects, but a PhC in the re-
gion of self-collimation has essentially no diffraction and
input beams spread over a range of input angles are
collimated into a single direction. The phenomenon of
beam-like propagation without divergence is important
to many applications, including optical interconnects in
an integrated circuit. Self-collimation provides a solution
to beam control that does not require additional fabrica-
tion steps and can be used in conjunction with additional
effects to further tailor the application needs.

The shape of the PhC isofrequency dispersion surface
is the essential feature determining the self-collimation
and can be optimized and manipulated, for instance, by
lattice symmetry, material parameters and the geome-
try shape of the constituents[2]. In constituent isotropic
materials, the electric polarization and refractive index
are independent of the wave propagation direction; how-
ever, in anisotropic materials, both polarization and re-
fractive index depend on the wave propagation direc-
tion. Therefore the dispersion surfaces of PhCs made
with anisotropic constituent materials provide another
degree of freedom for improving the performance.

Anisotropic materials in the PhC were first studied
by Zabel and Stroud[3] in 1993. The authors demon-
strated that the anisotropy can reduce the band gap of
PhC by breaking the degeneracies of bands with different
polarizations. They even found a case where sufficient
anisotropy would close the gap altogether. In 1998, Li et
al. reported a large absolute band gap in two dimensional
(2D) PhCs made of anisotropic materials[4,5]. Recently,
Alagappan et al. extensively explored anisotropic mate-
rials and among other results, reported the decoupling
of the two polarizations on 2D PhC made of anisotropic
materials[6].

In this paper we study PhCs with mixtures of
anisotropic materials; both the inclusions and the back-
ground may be anisotropic. To demonstrate the sig-
nificance of anisotropic materials we report the results
on self-collimating phenomena. In particular we examine
the degree of self-collimation versus the range of input an-
gles. Moreover, we identified a potential candidate for re-
alizing such an anizotropic medium, an organic ionic salt
crystal with the acronym 4-dimethylamino-N-methyl-4-
stilbazolium-tosylate (DAST). Photo-induced chemical
reactions can be used to change the optical properties[7]
and the refractive index of this material. However, the
index contrast is modest and thus does not produce a full
band gap. In DAST either or both constituent materials
can be anisotropic and the anisotropy can be controlled to
some degree by the radiation dose. Our choice of DAST
is motivated by planned experiments on Terahertz (THz)
generation, where the nonlinear optical rectification is
very strong with d111 approximately 500 pm/V near a
wavelength of 1500 nm[8,9].

In the present study we model a 2D square lattice pho-
tonic crystal with anisotropic dielectric constants. The
specific dielectric parameters used in this paper are mo-
tivated by recent results on DAST, which is a biaxial
anisotropic crystal. DAST undergoes a large change of
its refractive indices when irradiated with visible light.
By using the multiple-beam interference laser lithogra-
phy a periodic structure can be written into the host
material. By the choice of beam geometries the volume
that is bleached can be either an inclusion-like region or
a host medium region. To illustrate the dispersion effects
of the refractive index ellipsoid we simplify the topology

1671-7694/2007/090527-04 c© 2007 Chinese Optics Letters



528 CHINESE OPTICS LETTERS / Vol. 5, No. 9 / September 10, 2007

of the structure by using circular rods for the shape of the
material embedded in the host. Bleached DAST rod-like
cylinders are periodically embedded in the non-bleached
DAST host material. Bleached and non-bleached regions
are both anisotropic, although the bleached material is
nearly isotropic.

The data in Table 1 illustrate the large changes in-
duced in the refractive index for bleached and unbleached
DAST. DAST crystals can be grown in relatively large
sizes with good optical quality[7] and the combinations of
low dielectric constant and high nonlinearity make DAST
crystals interesting materials for high speed modulation
and frequency mixing applications, including generation
and detection of THz radiation[10]. We can exploit the
large change of the refractive index to modify the isofre-
quency dispersion curves and in particular, the angular
range for acceptable self-collimation in the PhC can be
improved.

Maxwell’s equations can be reduced to scalar equations
under the condition that a principal axis is parallel to the
rod axis. In this case we assume the spatially periodic,
dielectric function has the form

˜̃ε(�x) =

[
εxx εxy 0
εyx εyy 0
0 0 εzz

]
. (1)

The axis of the rods is along the z-axis and the other
two axes can be rotated with respect to the x- and y-
axes. For 2D in-plane propagation of waves with the
dielectric tensor in Eq. (1), Maxwell’s equations are re-
duced to scalar wave equations. For the E-field parallel
to the rods (along the axis labeled z), the wave equation
takes the scalar form

∇2
⊥E + k2εzzE = 0. (2)

This has the same solutions as the isotropic case and will
be used as a comparison case in this paper. For the H-
field parallel to the rods the scalar wave equation takes
the form

�∇⊥ · ˜̃η
⇀∇⊥H + k2H = 0. (3)

The operators are restricted to the x-y plane and k is
the free space wave number. The inverse of the rank 2
sub-matrix is given by

˜̃η =
[

εxx εxy

εyx εyy

]−1

. (4)

Equation (3) has contributions mixing the diffraction in
the x-y plane which can dramatically alter the spatial

Table 1. Principal Refractive Indices for DAST[7]

λ n1(||a) n2(||b) n3(||c)
(nm) Crystal Bleached Crystal Bleached Crystal Bleached

633 2.550 1.641 1.784 1.616 1.597 1.629

830 2.351 1.613 1.659 1.603 1.583 1.611

1300 2.166 1.591 1.620 1.614 1.575 1.592

1500 2.138 1.580 1.614 1.608 1.571 1.588

dispersion. We concentrate here on the solution of Eq. (3)
by using the plane-wave expansion method. The wave
equation in the plane-wave form is written as∑

�G′

(�G − k) · ˜̃η(�G − �G′) · (�G′ − k)H�G′ + k2H�G = 0. (5)

The radius of the circular cylinders is r and the lattice
constant is a. As usual, the lattice constant is used to
scale the cylinder radius,

ηij(�G) =
(

πr2

a2
Δηij + ηij(host)

)
δ�G,�0 + 2Δηij

πr2

a2

J1(Gr)
Gr

,

(6)

where Δηij = ηij(rod) − ηij(host) and i, j = x, y.
The solution of Eq. (5) and the corresponding isotropic

medium case are straightforward. We construct isofre-
quency curves for specific case and discuss the impli-
cation for self-collimation in the following section. In
particular we examine the second band, which has a self-
collimation feature.

Our discussion is restricted to a 2D square lattice of
circular rods with radii varied from r = 0.1a to 0.5a,
where a is the period of the lattice. The DAST crystal
index parameters are varied for n1 between 2.55 and
1.64 and for n2 between 1.78 and 1.62, respectively, for
the background medium going from the unbleached to
the bleached states. We choose the condition εzz = n2

z
with nz = 2.55 for an isotropic response (i.e., the E-
field is parallel to the rods, which are oriented along
the principal axis for n1). The refractive indices of the
bleached holes at the wavelength of 633 nm are n1 = 1.64
and n2 = 1.62, which correspond to a nearly isotropic
medium. The hole radius and the background anisotropy
are varied to optimize the angular dispersion for the
largest incident angle that can be self-collimated inside
the crystal. In the following we shall present dispersion
surfaces of this crystal. The birefringence ratio defined
as n1/n2 is 1.43 for unbleached DAST at 663 nm. For
bleached DAST the birefringence ratio is reduced to 1.01.

In Fig. 1 we present the isofrequency surfaces for the

Fig. 1. Isofrequency representation for bands 1 and 2 for a
square lattice with isotropic materials. (a) 3D view of the
first two bands; (b) and (c) contours of bands 1 and 2. The
refractive indices are nrod = 1.62 and nhost = 2.55, and the
radius of the rods is r = 0.2a.
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first and second band of a PhC with the rods oriented
parallel to the principal axis of the refractive index ellip-
soid labeled 1 and the E-field parallel to the rods. The
cylinder radius is 0.2a, where a is the lattice constant.
This is equivalent to an isotropic square lattice and is
shown in Fig. 1(a). The wave vector is scaled so that the
first Brillouin zone lines in the range (−π, π) for each
component. By comparison the same dispersion surfaces
in Fig. 1(b) and (c) are shown as contours. The first band
has an isotropic propagation at low frequencies with cir-
cular isofrequency curve features; while the second band
has a square, pyramidal shape with slight curvature and
rounded edges. There is a frequency where the curva-
ture is minimized over a wide range of input angles and
this constitutes the optimal isofrequency value for self-
collimation in the photonic crystal. The extent of self-
collimation is quantified by examining the group velocity
(also the direction of power flow), which is determined
by the gradient of the frequency in k-space,

�vg = �∇�kω. (7)

The magnitude of the group velocity index near the band
center for the first band is 2.0 over most of the Brillouin
zone, except near the band edges, and the group velocity
magnitude for the second band is also 2.0 over most of
the Brillouin zone region. By inspecting the isofrequency
surfaces, the pyramidal-shaped second band has a region
where the crystal self-collimates an incident beam over a
range of angles.

When such a PhC is illuminated within frequency range
of first band, the isofrequency contours are circularly
shaped and incident light on the PhC undergoes usual
refraction when the wave vector is sufficiently far from
the Brillouin zone boundary. However, second band
isofrequency surfaces have a flattened, squarer shape
for a range of frequencies. For the isofrequency con-
tour a/λ = 0.38, the beam is collimated for the range
of the scaled transverse wave vectors, ky , lying between
about −0.4 and +0.4. The normal value of the wave vec-
tor in the PhC changes by about 0.5% and the group
velocity varies from vertical by about θg < 1◦ (i.e.,
sin θg = vgy/|vg|). The range of the scaled transverse
wave vector ky lies between about −0.4 and +0.4, for
light in the PhC propagating within an angle of 1◦ of the
x-axis. The incident angle is determined by using Snell’s
law in the form a

λ sin(θin) = ky

2π , the calculated maximum
input angle for a/λ = 0.38 and ky = 0.4 is about 9.6◦. In
other words, an incident light beam with a divergence up
to 9.6◦ can be self-collimated in the PhC to within 1◦. It
is desirable to have a larger flatter surface so the accept-
able incident angle will be larger and therefore incident
light with a higher divergence can be collimated in the
PhC.

We now turn our attention to study the effect of
anisotropic dielectrics on the self-collimation of light in
the PhC. We first determine the maximum input angle
that is collimated to within a certain angle for a cylin-
der radius 0.2a, as a function of the anisotropy ratio.
The birefringence ratio, n1/n2, is changed only for the
background refractive indices while keeping the cylinder
birefringence ratio constant. Figures 2(a)—(c) show the
second-band contours while varying the index ratio. The
curvature of the isofrequency curvature along the kx axis

Fig. 2. Second band isofrequency contours. The index n1 is
fixed at 2.55 and the values of n2 are (a) 1.7, (b) 1.9, (c) 2.2.
r = 0.2a.

is much larger than the curvature along the ky axis in
our figures. To achieve high collimation of the optical
beams in the PhC over the largest range of incident di-
vergence angles the propagation closer to the x-axis is
desirable. We determine the angles of refraction using
Snell’s law. For an incident beam propagating close to
the x-axis, a range of transverse wave vectors, ky, is
used to determine the degree of self-collimation. The
self-collimation of the beam is defined in terms of the
group velocity, as discussed in the previous paragraph.
The values of the refractive index in Figs. 2(a)—(c) are
n2 = 1.7, 1.9, and 2.2. As n2 decreases, the shape of the
isofrequency curves are elongated more along the x-axis.
The contours parallel to the ky axis for a/λ = 0.38 have
sufficiently flat contours over a range of frequencies and
the range becomes smaller as the birefringence ratio is
reduced toward the isotropic case. The curvature of the
isofrequency contours is much greater for propagation
along the x-axis until the birefringence is sufficiently
reduced where it approaches the value quoted above for
an isotropic material, as in Fig. 1(c).

In Fig. 3 the dependence of the angular deviation of the
group velocity from normal is plotted against the corre-
sponding input angle. These data are extracted from the
isofrequency curve by computing the gradient of the fre-
quency. The line is nearly linear from normal incidence
(0) to close to the maximum deviation of θg. At an in-
put angle near 25◦ the deviation angle is about 6◦, while

Fig. 3. Isofrequency curve for the case r = 0.15a showing the
maximum of the angular deviation of the group velocity.
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at 12.5◦ the deviation is about 3◦. Exploiting a region
where large input angle ranges are found that can lead
to a larger deviation angle, as in Fig. 3.

We explore the relationship between the input angles
and the angular deviation of the group velocity for a
range of birefringence ratios in Fig. 4. As in Fig. 3 for a
fixed frequency we extract the maximum incidence angle
from air to the PhC where the group velocity deviates
from the x direction. The results for a range of param-
eters are summarized in Fig. 4 for the fixed frequency
a/λ = 0.38 and the fixed hole radius 0.2a. The curves
are generated by adjusting the frequency and determin-
ing the maximum of θg. The maxima of θg are almost
linearly related to the input angles at the maximum.
The larger anisotropies do better for larger input angles
by better collimating a divergent input beam. The solid
line is the isotropic case for a rod index of 2.55.

The cylinder radius is another strong parameter
affecting the dispersion surfaces. In Fig. 5 we summarize
the effect of the cylinder radii by plotting the maximum
angular deviation of the group velocity from the surface
normal. Two cases of self-collimation are plotted here.
The solid curve is for the isotropic medium case and the
dashed curves are for the anisotropic medium case. There
are two curves for each case, the upper curve shows isofre-
quency curves with a maximum deviation of 6.5◦ and the
lower curve is deduced from data with a maximum devi-
ation of 4.5◦. An input angle of 30◦ was found for the

Fig. 4. Maximum angular deviation of the group velocity
versus the incident angle at that point for selected values of
n2. Cylinder radii are r = 0.2a.

Fig. 5. Input angle for the maximum deviation of the group
velocity from normal versus the scaled cylinder radius. The
dashed lines correspond to data for the anisotropic PhC and
the solid curve is data for the isotropic PhC. The upper curves
are for the maximum deviation of 6.5◦, and the lower for 4.5◦.

anisotropic case and a cylinder radius around r = 0.2a.
The anistropic and the isotropic cases are nearly iden-
tical for a radius of 0.5a. The maximum deviation for
isotropic media can be maintained for a range of radii
between 0.2a and 0.4a. Larger input angles are found for
cylinder radii between 0.1a and 0.3a.

In conclusion, for relatively modest refractive index
changes, the dispersion surfaces of anisotropic photonic
crystals may be greatly distorted from those of a homo-
geneous medium. The parameters we used in our calcula-
tions are within ranges that have already been achieved
for DAST in the laboratory. This paper demonstrated
how the use of anisotropy for the constituents can be
applied to increase the range of input angles that are
self-collimated. We used cylindrical rods on a square lat-
tice embedded in a host medium, both of which could
be anisotropic. The self-collimation is effective for two
PhC geometries. In both cases the E-field parallel to
the n1 principal axis, while for the isotropic case the
rods are aligned with the n1 principal axis and for the
anisotropic case the rods parallel to the n2 principal axis.
The precise geometric structure of the photonic crystal
constituents modifies the results here, but the general re-
sults are maintained. Also the rotation of the principle
axes of the anisotropic media relative to the symmetry
axes of the photonic crystals can be applied to further
engineer the dispersion surfaces for a variety of applica-
tions. The strong second-order nonlinearity of the DAST
crystal can be further used to generate a strong THz sig-
nal by mixing two waves inside the sample. By manag-
ing the dispersion inside the crystal two beams incident
at different angles can be collimated inside the PhC to
assure a small walkoff of the beams.
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